ACM-ICPC South Western European Regional SWERC 2008

FAU Contest Team

icpc@i2.informatik.uni-erlangen.de
Friedrich-Alexander Universität Erlangen-Nürnberg
November, 232008

IV Übersicht

Problem	min. LOC	max. LOC
Bring Your Own Horse	54	180
First Knight	82	123
Postal Charges	44	103
Randomly-priced Tickets	71	138
The Game	80	248
The Merchant Guild	47	117
Toll Road	48	134
Top Secret	49	115
Transcribed Books	36	82
Wizards	66	262
\sum	577	1502

Bring Your Own Horse

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Bring Your Own Horse

For each test case:

- places and roads define an undirected graph
- find a minimum spanning tree (Kruskal or Prim)
- for each query, do a BFS or DFS in this tree
- return the longest edge found

First Knight

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

First Knight

- independent moves \rightsquigarrow Markov chain
- $E_{i, j}=$ expected number of moves from (i, j) to (m, n)
- system of $m \cdot n$ linear equations with $m \cdot n$ variables $E_{i, j}$

$$
\begin{aligned}
E_{i, j} & =1+p_{i, j}^{(1)} E_{i+1, j}+p_{i, j}^{(2)} E_{i, j+1}+p_{i, j}^{(3)} E_{i-1, j}+p_{i, j}^{(4)} E_{i, j-1} \\
E_{m, n} & =0
\end{aligned}
$$

First Knight

- independent moves \rightsquigarrow Markov chain
- $E_{i, j}=$ expected number of moves from (i, j) to (m, n)
- system of $m \cdot n$ linear equations with $m \cdot n$ variables $E_{i, j}$

$$
\begin{aligned}
E_{i, j} & =1+p_{i, j}^{(1)} E_{i+1, j}+p_{i, j}^{(2)} E_{i, j+1}+p_{i, j}^{(3)} E_{i-1, j}+p_{i, j}^{(4)} E_{i, j-1} \\
E_{m, n} & =0
\end{aligned}
$$

- Gaussian elimination
- $p_{i, j}^{(1)} \neq 0$ or $p_{i, j}^{(2)} \neq 0 \rightsquigarrow$ no pivoting required
- block tridiagonal matrix, bandwidth $2 n+1 \rightsquigarrow$ time complexity $O\left(m n^{3}\right)$
- iterative solutions converge too slowly

First Knight

$\begin{array}{\|ccccc} \hline 1 & -p_{1,1}^{(2)} & & \\ -p_{1,2}^{(4)} & 1 & -p_{1,2}^{(2)} & \\ & -p_{1,3}^{(4)} & 1 & -p_{1,3}^{(2)} \\ & & -p_{1,4}^{(4)} & 1 \end{array}$	$\begin{array}{\|llll} -p_{1,1}^{(1)} & & & \\ & -p_{1,2}^{(1)} & & \\ & & -p_{1,3}^{(1)} & \\ & & & -p_{1,4}^{(1)} \end{array}$	
$\begin{array}{\|llll} \hline-p_{2,1}^{(3)} & & & \\ & -p_{2,2}^{(3)} & & \\ & & -p_{2,3}^{(3)} & \\ & & & -p_{2,4}^{(3)} \end{array}$	$\begin{array}{\|ccccc} \hline 1 & -p_{2,1}^{(2)} & & \\ -p_{2,2}^{(4)} & 1 & -p_{2,2}^{(2)} & \\ & -p_{2,3}^{(4)} & 1 & -p_{2,3}^{(2)} \\ & & -p_{2,4}^{(4)} & 1 \end{array}$	$\begin{array}{llll} \hline-p_{2,1}^{(1)} & & & \\ & -p_{2,2}^{(1)} & & \\ & & -p_{2,3}^{(1)} & \\ & & & -p_{2,4}^{(1)} \end{array}$
	$\begin{array}{lll} -p_{3,1}^{(3)} & & \\ & -p_{3,2}^{(3)} & \\ & & -p_{3,3}^{(3)} \end{array}$	$\begin{array}{\|cccc} \hline 1 & -p_{3,1}^{(2)} & & \\ -p_{3,2}^{(4)} & 1 & -p_{3,2}^{(2)} & \\ & -p_{3,3}^{(4)} & 1 & -p_{3,3}^{(2)} \\ & & 0 & 1 \end{array}$

$E_{1,1}$
$E_{1,2}$
$E_{1,3}$
$E_{1,4}$
$E_{2,1}$
$E_{2,2}$
$E_{2,3}$
$E_{2,4}$
$E_{3,1}$
$E_{3,2}$
$E_{3,3}$
$E_{3,4}$
:---
1
1
1
1
1
1
1
1
1
1

Postal Charge

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Postal Charges

- Manhattan distance!
- there are 100 rectangles, count points in each one
- store the sum of the distances of each point in a rectangle to its lower left / upper right corners
- loop over all pairs of rectangles and do some simple arithmetic

Randomly-priced Tickets

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Randomly-priced Tickets

- route with least expected price \rightsquigarrow shortest path in an undirected graph
- use Floyd-Warshall for all-pairs shortest paths
- probability depends only on length L of the path

Randomly-priced Tickets

- consider drawing of L numbers between 1 and R
- probability $=\#$ of outcomes with sum \leq budget divided by total \# of possibilities
- problem equivalent to: How many ways to throw L dice such that their sum is \leq budget?
- solved by dynamic programming

The Game

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

The Game

- 2-player game
- variant of well-known Kalaha
- problem description must be read carefully
- both players play optimally \Rightarrow current player moves so that the best score of the opponent after this move is minimized
- use Alpha-beta pruning to narrow the search space

The Merchant Guild

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

The Merchant Guild

- assignment is valid iff
≤ 1 trader is assigned a position $\geq n$,
≤ 2 traders are assigned positions $\geq n-1$,
≤ 3 traders are assigned positions $\geq n-2, \ldots$
- DP with $a_{k, m}=\#$ of valid assignments to positions k, \ldots, n with m available slots
- runs in $O\left(n^{3}\right)$

The Merchant Guild

$$
\begin{aligned}
s_{k} & =\# \text { of local traders with position } \leq k \\
r_{k, m} & =k-s_{k-1}+m \\
b_{k, m} & =m+1-s_{k-1}+s_{k-2} \\
a_{k, m} & =\sum_{i=0}^{b_{k, m}}\binom{r_{k, m}}{b_{k, m}-i} a_{k-1, i}
\end{aligned}
$$

Toll Road

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Toll Road

- map of towns and roads is a tree
- edges have weights
- find subtree S with maximal sum of edge weights
- generalisation of 'maximal subsegment sum'

1
 Toll Road

- map of towns and roads is a tree
- edges have weights
- find subtree S with maximal sum of edge weights
- generalisation of 'maximal subsegment sum'
- choose arbitrary root to 'hang up' tree

- root in $S \rightsquigarrow$ collect positive upper parts from all child trees or not \rightsquigarrow take best solution among all child trees
- linear time complexity by divide-and-conquer
- arrange nodes in bottom-up order by breadth- or depth-first search


```
```

\#include <iostream>

```
```

\#include <iostream>
\#include <list>
\#include <list>
using namespace std;
using namespace std;
typedef pair<int,int> pi;
typedef pair<int,int> pi;
list<pi> adj[1<<18];
list<pi> adj[1<<18];
int mss;
int mss;
int dfs(int x, int y) {
int dfs(int x, int y) {
int p = 0;
int p = 0;
for (; !adj[x].empty() ; adj[x].pop_back())
for (; !adj[x].empty() ; adj[x].pop_back())
if (adj[x].back().first != y)
if (adj[x].back().first != y)
p += max(0,adj[x].back().second +
p += max(0,adj[x].back().second +
dfs(adj[x].back().first, x));
dfs(adj[x].back().first, x));
mss = max(mss,p);
mss = max(mss,p);
return p;
return p;
}

```
}
```

```
int main() {
```

int main() {

```
int main() {
```

int main() {
int n, a, b, p;
while (cin >> n \&\& n) {
while (n--) {
while (n--) {
while (n--) {
while (n--) {
cin >> a >> b >> p;
adj[a].push_back(pi(b,p));
adj[a].push_back(pi(b,p));
adj[a].push_back(pi(b,p));
adj[a].push_back(pi(b,p));
adj[b].push_back(pi(a,p));
adj[b].push_back(pi(a,p));
adj[b].push_back(pi(a,p));
adj[b].push_back(pi(a,p));
}
}
}
}
mss = 0;
mss = 0;
mss = 0;
mss = 0;
dfs(b, b);
dfs(b, b);
dfs(b, b);
dfs(b, b);
cout << mss << endl;
}
}
}
}
return 0;
return 0;
return 0;
return 0;
}

```
}
```

}

```
}
```


Top Secret

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Top Secret

- decrypted numbers on a ring
- encryption is simple: for each number: add L times the number on the left and R times the number on the right (repeat this step S times)

J Top Secret

- decrypted numbers on a ring
- encryption is simple: for each number: add L times the number on the left and R times the number on the right (repeat this step S times)
- can be accelerated by using matrix representation and repeated squaring

$$
\left(\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right)=\left(\begin{array}{llll}
1 & R & 0 & L \\
L & 1 & R & 0 \\
0 & L & 1 & R \\
R & 0 & L & 1
\end{array}\right)^{S} \cdot\left(\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

Top Secret

- matrix multiplication is still too slow for $N=1000$
- matrix is circulant, product of circulant matrices is circulant
- \rightsquigarrow speed up matrix multiplication:

$$
\left(\begin{array}{cccc}
1 & R & 0 & L \\
L & 1 & R & 0 \\
0 & L & 1 & R \\
R & 0 & L & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{llll}
1 & R & 0 & L
\end{array}\right)
$$

- $O\left(N^{2}\right)$ space $\rightsquigarrow O(N)$ space $O\left(N^{3}\right)$ time $\rightsquigarrow O\left(N^{2}\right)$ time

Transcribed Books

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Transcribed Books

- notice: $N \mid \sum_{i=1}^{9} a_{i}-a_{10}$ for each serial number

Transcribed Books

- notice: $N \mid \sum_{i=1}^{9} a_{i}-a_{10}$ for each serial number - calculate the gcd of all $\sum_{i=1}^{9} a_{i}-a_{10}$

Transcribed Books

- notice: $N \mid \sum_{i=1}^{9} a_{i}-a_{10}$ for each serial number
- calculate the gcd of all $\sum_{i=1}^{9} a_{i}-a_{10}$
- if the gcd is 0 , or the gcd is 1 , or any a_{10} is larger than the calculated gcd, output "impossible"
- else output the gcd as N

Wizards

- \# Submissions: 0 :(
- \# Accepted: 0:(
- First Team: -
- Time: -

Wizards

- find out, if the given polynomial has roots with multiplicity greater than 1

Wizards

- find out, if the given polynomial has roots with multiplicity greater than 1
- consider the factorisation of the polynomial $P=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$

Wizards

- find out, if the given polynomial has roots with multiplicity greater than 1
- consider the factorisation of the polynomial $P=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$
- a root with multiplicity >1 appears multiple times in this factorisation

Wizards

- find out, if the given polynomial has roots with multiplicity greater than 1
- consider the factorisation of the polynomial $P=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$
- a root with multiplicity >1 appears multiple times in this factorisation
- polynomials cannot be factored analytically, but...

Wizards

- look at the derivative of P :

$$
\begin{aligned}
P^{\prime} & =\left(x-x_{1}\right)^{\prime} \cdot\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
& +\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)^{\prime} \cdots\left(x-x_{n}\right) \\
& +\cdots \\
& +\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)^{\prime}
\end{aligned}
$$

- a root with multiplicity >1 appears in every term of this sum, hence is a root of P^{\prime},

Wizards

- look at the derivative of P :

$$
\begin{aligned}
P^{\prime} & =\left(x-x_{1}\right)^{\prime} \cdot\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \\
& +\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)^{\prime} \cdots\left(x-x_{n}\right) \\
& +\cdots \\
& +\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)^{\prime}
\end{aligned}
$$

- a root with multiplicity >1 appears in every term of this sum, hence is a root of P^{\prime},
- hence it is a root of the polynomial $\operatorname{gcd}\left(P, P^{\prime}\right)$
- $\operatorname{gcd}\left(P, P^{\prime}\right)$ is constant if P has only simple roots

J Wizards

- get polynomial gcd by Euclidean algorithm in the ring of polynomials, using polynomial long division
- watch out that the coefficients don't get too big divide them by their gcd
- use rational coefficients (reduce the fractions!), or integer coefficients (multiply the polynomial by the least common multiple of the denominators)

J) Wizards

- get polynomial gcd by Euclidean algorithm in the ring of polynomials, using polynomial long division
- watch out that the coefficients don't get too big divide them by their gcd
- use rational coefficients (reduce the fractions!), or integer coefficients (multiply the polynomial by the least common multiple of the denominators)
- or: solve numerically using Bairstow's method
- or: determinant of the Sylvester matrix $\neq 0$

Abendgestaltung

Kanapee?

